

(12) PATENT APPLICATION PUBLICATION

(19) INDIA

(22) Date of filing of Application :06/03/2025

(21) Application No.202541020113 A

(43) Publication Date : 30/05/2025

(54) Title of the invention : A POWER CONVERSION SYSTEM INTEGRATING THE HIGH-VOLTAGE GAIN DC-DC CONVERTER WITH A DIODE-CLAMPED MULTI-LEVEL INVERTER

(51) International classification :H02M7/483, H02M1/12, H02M1/14, H02M7/537
(86) International Application No Filing Date :NA
(87) International Publication No : NA
(61) Patent of Addition to Application Number :NA
Filing Date :NA
(62) Divisional to Application Number :NA
Filing Date :NA

(71)Name of Applicant :

1)GMR INSTITUTE OF TECHNOLOGY

Address of Applicant :GMR Institute of Technology, GMR Nagar, Rajam, Andhra Pradesh Rajam -----

Name of Applicant : NA

Address of Applicant : NA

(72)Name of Inventor :

1)GUNTUKU INDIRA KISHORE

Address of Applicant :Assistant Professor, Department of Electrical & Electronics Engineering, GMR Institute of Technology, GMR Nagar, Rajam, Andhra Pradesh- 532127

Rajam -----

2)TUMMALA S L V AYYARAO

Address of Applicant :Associate Professor, Department of Electrical & Electronics Engineering, GMR Institute of Technology, GMR Nagar, Rajam, Andhra Pradesh- 532127

Rajam -----

3)MUDADLA VENKATESH

Address of Applicant :Assistant Professor, Department of Electrical & Electronics Engineering, GMR Institute of Technology, GMR Nagar, Rajam, Andhra Pradesh- 532127

Rajam -----

(57) Abstract :

ABSTRACT A POWER CONVERSION SYSTEM INTEGRATING THE HIGH-VOLTAGE GAIN DC-DC CONVERTER WITH A DIODE-CLAMPED MULTI-LEVEL INVERTER The present invention relates to a power conversion system integrating the high-voltage gain DC-DC converter with a diode-clamped multi-level inverter. The integrated high voltage gain DC-DC converter and diode clamped multi-level inverter for renewable energy source in standalone applications. The invention presents a high-voltage gain DC-DC converter that efficiently boosts the low voltage from a renewable energy source while minimizing voltage stress on switching devices. The converter is integrated with a diode-clamped multi-level inverter (MLI) to produce an AC output for standalone applications. The proposed high-gain DC-DC converter comprises switched-capacitor topology (1) for high voltage conversion, single-switch operation (2) to minimize complexity and inductor-capacitor network (3) to reduce ripple and voltage stress. A closed-loop control strategy is implemented using a current-mode controller, ensuring a stable DC link voltage even under load variations. To be published with figure 1

No. of Pages : 27 No. of Claims : 10